当前位置: 首页 >> 数学题精选 >> 文章正文

车站检票口的牛吃草问题

车站检票口的牛吃草问题:某车站在检票前若干分钟就开始排队,每分钟来的旅客人数一样多。从开始检票到等候检票的队伍消失,同时开4个检票口需30分钟,同时开5个检票口需20分钟。如果同时打开7个检票口,那么需多少分钟?

 分析与解:等候检票的旅客人数在变化,“旅客”相当于“草”,“检票口”相当于“牛”,可以用牛吃草问题的解法求解。

 旅客总数由两部分组成:一部分是开始检票前已经在排队的原有旅客,另一部分是开始检票后新来的旅客。

 设1个检票口1分钟检票的人数为1份。因为4个检票口30分钟通过(4×30)份,5个检票口20分钟通过(5×20)份,说明在(30-20)分钟内新来旅客(4×30-5×20)份,所以每分钟新来旅客 (4×30-5×20)÷(30-20)=2(份)。

 假设让2个检票口专门通过新来的旅客,两相抵消,其余的检票口通过原来的旅客,可以求出原有旅客为 (4-2)×30=60(份)或(5-2)×20=60(份)。

 同时打开7个检票口时,让2个检票口专门通过新来的旅客,其余的检票口通过原来的旅客,需要 60÷(7-2)=12(分)。

本文标题:车站检票口的牛吃草问题

本文地址:http://www.ziyo.org/archives/1091.html

发布:小学数学资优网

发表评论