当前位置: 首页 >> 数学题精选 >> 文章正文

abc是一个任意三位数

abc是一个任意三位数。如果将其加在2013 后,成为一个新的七位数。找出一个这样的七位数,使其能被 5, 11, 36 整除。

数学题解答:此题考察能被5,11,4,9整除的数的特征。

①能被5整除的数的个位必须是0或5;

②能被4整除的数的末两位数一定是4的倍数,所以末位不可能是5,只能是0,即c是0;

③能被9整除的数各位上的数字之和是9的倍数。所以,2+0+1+3+a+b+c是9的倍数。即a+b必须等于12。

④能被11整除的数的奇数位的数字之和,与偶数位的数字之和相减,所得的差需是11的倍数,所以(2+1+a+c)-(0+3+b)是11的倍数。考虑到a+b须等于12,所以此处的差只可能为0,即a=b,所以a是6,b也是6。

这个七位数是:2013660。

本文标题:abc是一个任意三位数

本文地址:http://www.ziyo.org/archives/2260.html

发布:小学数学资优网

发表评论